Why Oatmeal is Cheap

Kolmogorov Complexity & Procedural Generation

by Younès Rabii & Mike Cook

Younès Rabii

Indie gamedev PhD Student at QMUL IGGI programme

Michael Cook

Senior Lecturer at King's College London

thanks to procedural generation, I can produce twice the content in double the time

1:10 PM - 25 Nov 2016

a theorem about generators

A. 3 math properties

 \rightarrow 3 intuitive concepts used by designers

B. how the theorem links them together

thanks to procedural generation, I can produce twice the content in double the time

1:10 PM - 25 Nov 2016

a theorem about generators

A. 3 math properties

 \rightarrow 3 intuitive concepts used by designers

B. how the theorem links them together

What we're studying: Ideal Generators

a generator G is **ideal** if it satisfies the following properties:

- ★ Fixed Input Size: It accepts input of a specific length
- ★ Terminability : It always outputs something
- ★ Injectivity : Different inputs give different outputs

We can take a non-ideal generator and turn into one that is ideal.

1. Length

```
pal({1,8,3,9,14,4})
cls()
function update()
 local x = rnd(128)
 local y = rnd(128)
 local e = t()
 for c=-2,1 do for r=-1,1 do
 local a=64+c*54+r%2*27
 local b=64+r*48
 line()
 for i=0,1,1/6 do
    line(a+sin(i)*30,b+cos(i)*30,7)
  end
 if(sqrt((x-a)^2+(y-b)^2) < 15+sin(c/7)^{*4}+sin(r/2)^{*4})
    pset(x,y,2+c+r*2+sin(x/81+e)*2+cos(y/(14*c)))
 end
end
```

(206 bytes)

|G| is the length of G's source code

pal({1,8,3,9,14,4})cls()s=sin::_:: x=rnd(128)y=rnd(128)e=t() for c=-2,1 do for r=-1,1do a=64+c*54+r%2*27b=64 +r*48line()for i=0,1,1/6do line(a+s(i) *30,b+cos(i)*30,7)end if sqrt((x-a)^2+ (y-b)^2)<15+s(c/7)*4+s(r/2)*4) pset(x,y ,2+c+r*2+s(x/81+e)*2+cos(y/(14*c)))end end goto _--

(140 bytes)

in its most compressed form

\rightarrow Encoded Knowledge

Knowledge...

- Learn how to compose artefacts
- Specify a precise procedure to make them

... you have to Encode

- Implement the procedure
- ➤ Test it
- > Debug it
- > Document it
- > Optimise it

It ain't cheap.

2. Size of Possibility Space

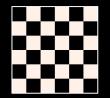
p(G) is the number of unique artefacts in G's possibility space.

p(G) = 100

P(G) is the log₂ of that number.

 $\overline{P(G)} = \log_2(100) \approx 6.64$

Borderlands 3



<image><section-header><section-header><section-header><section-header><section-header><section-header>

Animal Crossing: New Horizons

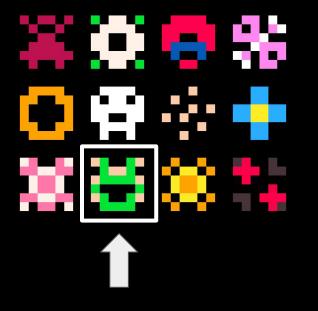
Picrew by @ ASTROLAVAS

3. Kolmogorov Complexity (simplified)

"alternate black and white"

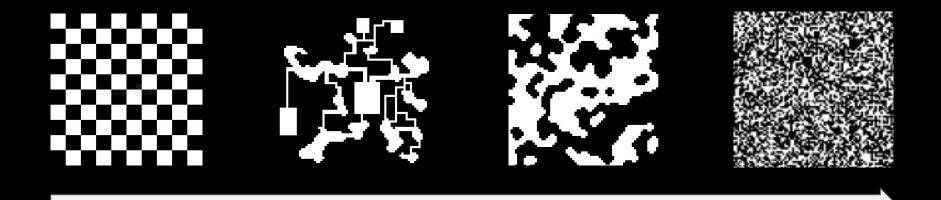
4 words

"a 9x9 **red cross** overlaid with a 3x3 **white square** in the center"


13 words

"blue then green then yellow then white then pink then yellow then blue then white then two red then two blue then..."

72 words


3. Kolmogorov Complexity (simplified)

Most complex artefact **K(A)** is the complexity of an artefact **A**.

K*(**G**) is complexity of the most complex artefact of **G**.

\rightarrow Pattern Density

Low K-Complexity

- Repetitive
- Patterns are easy to spot

High K-Complexity

- Noisy
- No spottable patterns

thanks to procedural generation, I can produce twice the content in double the time

1:10 PM - 25 Nov 2016

a theorem about generators

A. 3 math properties

 \rightarrow 3 intuitive concepts used by designers

B. how the theorem links them together

Theorem Statement

For an ideal generator G,

$|G| + P(G) \ge K^*(G) \ge P(G)$

Scale

Pattern Density Encoded Knowledge + Scale \rightarrow is always in the second s

 \rightarrow is always in the shape of a pyramid

[Interactive demo time!]

Thank you!

Paper + Demo pyrofoux.github.io/why-oatmeal-is-cheap/

yrabii.eggs@gmail.com

Exercice for the reader:

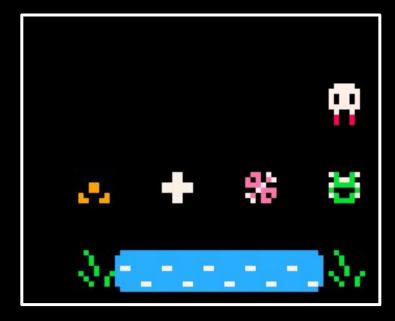
- 1. Using only $K^*(G)$ and P(G), can you find a 4th stage to this pyramid?
- 2. Can you relate it to a concept designers use?

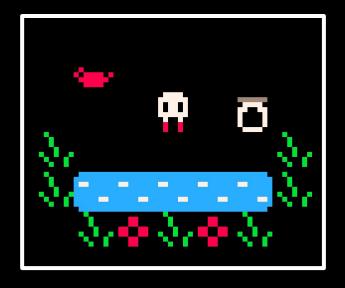
$??? \geq |G| + P(G) \geq K^*(G) \geq P(G)$

Scale Pattern Density Encoded Knowledge + Scale [?]

Thank you!

aka **pyrofoux**


yrabii.eggs@gmail.com



pyrofoux.itch.io/super-is-hot

PAGE 4										
	I	1	2	L	4	5	6	٦	:	٩
Ι	175	Ø,	0	ι÷.	58		\circ	5	K	Ē.
1	5	ğ	h	Ħ	\mathbf{x}_{i}	•	Θ	23	3	ų,
2	30		\mathbb{C}^{2}	8	20	ж,		Ū.	22	0
3	00	E.	20	C	80	6	×		0	<mark>0</mark>
4	-	E.	9	8	3	K	e.	•	Ø	
5	33	25	33	8	3 8	\mathbf{O}		×	×	26
Ь	8	\otimes	: 😫	9	÷	38	÷	5	9	Ŷ
٦	+	2	ŵ	8	Π	ЦĽ,		**	Ð	\$6
:		2	88		ð	E	H	3	8	6
9	1	2	0	0	%	2	0		-	٩,

